Transport Phenomena Involved in Controlled Atmosphere Brazing of Microchannel Aluminum Heat Exchanger
نویسندگان
چکیده
Controlled atmosphere brazing (CAB) is a state-of-the-art joining technology associated with high production rates of many products, including microchannel aluminum heat exchangers. The complex designs of highly augmented compact heat transfer surfaces impose very difficult requirements for a brazing process. Regardless of the fact that brazing is a highly developed engineering art, many state-of-the-art manufacturing operations lack predictability and clear description of the phenomena involved. The related phenomena are to a large extent only partially explored, owing the progress mostly to the lack of a detailed knowledge of involved physical-chemical processes. This paper elaborates on the comprehensive research and development activities involved in manufacturing new generation Al heat exchangers using brazing technology. Our current activities are aimed at a set of goals that significantly contribute to the optimization of bonding processes, including material selection and process conditions. In this paper, an overview of the CAB aluminum brazing process will be introduced first. Transport phenomena related to molten metal flow behavior and joint formation during microchannel heat exchanger brazing process is the major objective of this study. The in-situ real time monitoring facilities in our brazing lab are used for direct observation of wetting kinetics of surface tension governed reactive flows of molten aluminum filler metal during brazing. Interesting phenomena such as flow of liquid metal through capillary grooves and its relation with Al heat exchanger brazing will be explored. Examples of in-house designed and brazed Al compact heat exchangers will be illustrated. The examination of brazing results using metallographic procedure will also be elaborated.
منابع مشابه
Numerical investigating the gas slip flow in the microchannel heat sink using different materials
In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...
متن کاملCalculation of Heat Transfer Coefficient of MWCNT-TiO2 Nanofluid in Plate Heat Exchanger
The objective of the present study is the synthesis of MWCNT-TiO2 hybrid nanostructures by solvothermal synthesis method with TiCl4 as precursor. The heat transfer enhancement due to the use of MWCNT-TiO2 nanofluid was investigated. As-prepared hybrid materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that MWCNTs were uniformly dec...
متن کاملThe Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow
In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...
متن کاملAluminum Oxide Nanofluid Energy Transfer
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids.This article aims to investigate the overall and convection heat transfer coefficient and Nusselt number of Al2O3-water nanofluid flowing in a horizontal double pipe heat exchanger under turbulent flow (...
متن کاملExperimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014